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For structures consisting of identical point atoms, formulas expressing the magnitudes of the 
structure factors in terms of the phases are obtained. Thus the crystal structure is uniquely deter- 
mined by the values of the phases alone. It  is already known that also the magnitudes suffice to deter- 
mine the crystal structure. However, evidence is presented which suggests that, in a sense to be 
described, the structure is more strongly dependent on the values of the phases than on the values 
of the magnitudes of the structure factors. 

1. Int roduct ion 

An important by-product of attempts to discover 
relationships among the structure factors has been 
the gradual realization of the central role played by 
the structure invariants. Initially (Hauptman & 
Karle, 1953, 1956) the structure invariants were 
defined to be those linear combinations of the phases 
whose values are determined by the structure alone 
and are independent of the choice of permissible origin. 
Since the permissible origins are space group depen- 
dent, the structure invariants also depend on the 
space group. In the two references cited all the struc- 
ture invariants were determined for those space groups 
for which the unit cell is chosen, by convention, to 
be primitive. In two subsequent publications (I-Iaupt- 
man & Karle, 1959; Karle & I-Iauptman, 1961) the 
invariants for the remaining space groups were 
determined. 

The most important structure invariants are the 
linear combinations 

~01 -~- ~p2 -~- 9)3 , (1-1) 
where 

hi + h2 + ha = 0 , (1"2) 

and in which the abbreviations 

~ = ~hj, j = l, 2, 3 ,  (1.3) 

have been used. In (1-3) ~h- is  the phase of the 
normalized structure factor Ehj = Ej defined by 

Ej= IEjl exp (i~j) 
2g 

= (1/a~/2) ~v Zv exp (2~ih~.r~), (1-4) 
~,=1 

where N is the number of atoms in the unit cell, 
rv is the position vector of the vth atom, the atomic 
number of which is Z~, and 

iV 

~ = 2 z~. (1.5) 

The importance of the structure invariants (1.1) 
is threefold. First, the linear combinations (1.1) are 

structure invariants for all the space groups. Secondly, 
all those structure invariants (involving three or fewer 
phases) which are appropriate to any particular 
space group are obtainable from (1-1) and those 
relationships among the phases which arise from the 
symmetries of the space group. Finally, the values 
of the magnitudes of the invariants (1.1), together 
with the appropriate (space group dependent) proce- 
dure for fixing the origin and enantiomorph (Haupt- 
man & Karle, 1956), suffice to determine the values 
of all the phases. 

In addition to the (relatively new) set (1.1), there 
are two other fundamental sets of structure invariants 
which have been known for some time but which have 
not been called structure invariants. They are the 
magnitudes of the structure factors, 

IEhl , (1-6) 

and the interatomic vectors, 

r~. = r . -  rv .  (1.7) 

I t  is natural to call the elements of the sets (1.6) 
and (1.7) structure invariants bccause, as with the 
elements of the set (1.1), they are uniquely determined 
by the structure and are independent of the choice 
of origin. I t  is occasionally convenient to replace the 
set (1-7) by the equivalent Patterson function P(r) :  

P(r) = <([Ehl2--1)cos 2gh.r>h (1"8) 

=Z~Z,,/(~2 if r=ruv } (1-9) 
=0 if r~ r .~ ,  

so that  P(r) may also be regarded as a structure 
invariant. 

Since the expressions (1.1), (1-6), (1.7), and (1.8) 
all depend on the crystal structure alone, it is to be 
anticipated that  relationships among them exist. 
Initially the set (1.6) is known from experiment, 
so that  the problem of determining the crystal struc- 
ture is equivalent to that  of determining the phases 
of the structure factors. I t  was natural therefore 
that  the first relationships among structure invariants 
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to be discovered should express the linear combina- 
tions (1.1) in terms of the elements of the sets (1.6) 
and (1.8) (Hauptman & Karle, 1957, 1962; Karle & 
Hauptman,  1957; Vaughan, 1958). Equation (1.8) 
already expresses P(r) ,  i.e. the elements of the set (1.7), 
in terms of the magnitudes (1.6), while (1.4) implies 

5r 
]E~[ ~' -- (1/~2) ~ Z~,Z~ exp (2~ih.rg~), (1.10) 

1 

which expresses the magnitudes (1.6) in terms of the 
interatomic vectors (1.7). Thus, in order to clarify 
completely the interrelationships among the various 
s tructure invariants, there remains only the problem 
of expressing the structure factor magnitudes, (1.6), 
in terms of the invariants (1.1), i.e. in terms of the 
phases of the structure factors. The present paper is 
devoted to the solution of this problem. 

2. Analys i s  

The starting point of our investigation is the joint 
probabili ty distribution of the pair of normalized 
structure factors Ek, Eh+ k in which the vector h is 
fixed while the vector k is assumed to range uniformly 
throughout reciprocal space. 

2.1. The non-centrosymmetric space groups 
We denote by P(Ro, R~; 40, 41) the joint probabil i ty 

distribution of the pair Ek, Eh+ k SO tha t  

P(Ro, R1; 40, 41)dRodRlddod41 

is the probabili ty of the compound event: 

[Ek[ lies between Ro and Ro+dRo,  
[Eh+k[ lies between R1 and RI+dR1 ,  
~k lies between 40 and 40 + d d o ,  
~h+k lies between 41 and 41 + d41 .  

The probabili ty distribution P(Ro, R1; 4o, 41) is 
readily found by methods described elsewhere (Karle 
& Hauptman,  1958) or by integrating, with respect 
to R~ and 42, in equation (3.1.10) of the same refer- 
ence. We observe that ,  for the accuracy required in 
this paper, we find in all the non-centrosymmetric 
space groups the same probabili ty distribution as 
for space group P1. We obtain, for R0 >_ 0, R1 >_ 0, 

P(Ro, R~; 4o, (Ih)=(RoRd~ 2) exp ( - R ~ - R ~ ) ( 1  + 
(2/1V1/~)RoR~IEh[ cos (Fh + 40-- 4~) + . . .  }. (2.1.1) 

The expected value of cos (~%+~k--~h+k) is next 
found by a straightforward integration: 

<COS (~0h-[- ~ k - -  (~h ,-kk)>k 

= cos (~h+ 4 0 -  4 0  
¢51=0 ¢0=0 RI=0 R0=0 

xP(R0, R~; 40, 4~)dRodR~ddod41 (2.1.2) 

= (4/1V~/2)]EhIR~R ~ exp (-R2o-R~)dRodR~ + . . .  
0 0 

: ~/(4_/V1/2)]Eh[ q- . . . .  (2"1-3) 

Hence we obtain our first main result, 

[Eh[ = (4/7~)z/V 1/2 <cos (00h q- (~kq- (p--h--k)>k q - , . ,  , (2"1"4) 

which expresses the invariants (1.6) in terms of the 
invariants (1.1), i.e. the magnitudes of the structure 
factors in terms of the phases. 

We shall have occasion to compare (2.1.4) with the 
known result (Karle & Hauptman,  1957; Vaughan, 
1958) 

7V3/2 
cos (of1 + of 2 + of a) = 2iE1E2E8 I 

X <(IEkl 2 -- 1) ([Ehl+kl 2 -  1) (IEhl+hg.+k[ 2 -  1)> k 

1 
+ (IEI[U+[E212+[Eu]2-2) (2.1.5) 

IlmtE1E2E3 [ 

in which it  is assumed tha t  (1.2) holds and the ab- 
breviations of § 1 are employed. I t  is to be emphasized 
tha t  the exact val idi ty  of (2.1.5) is subject to the non- 
existence of a special kind of rational dependence 
among the atomic coordinates which has been pre- 
viously described (Karle & Hauptman,  1957). 

2.2. The centrosymmetric space groups 

Now we denote by P(Xo, X1) the joint prob- 
abili ty distribution of the pair Ek, Eh+k SO tha t  
P(Xo, X1)dXodX1 is the probability tha t  Ek lie 
between Xo and Xo + dXo and tha t  Eh+k lie between 
X1 and XI+dX1.  Referring to equation (3.3.1) of 
a previous paper (Hauptman & Karle, 1958) we 
readily find 

P(X0, X~)= 1/2~ exp [ -  ½(X02 + X~)] 

{ XoX~Eh } x i+ N 1 / ~  + . . .  (2.2.1) 

and observe that ,  for the accuracy required in this 
paper, the same formula holds for all the centro- 
symmetric space groups. 

Employing the fact tha t  each phase is now either 
0 or z, so tha t  

COS ((j0h'-~- ~ k - -  ~h+k) = -~- 1 

or -- 1 according as EhEkEh+ k is positive or negative, 
we find the expected value of cos (~h+qk--~n+k) 
as before: 

/[EhEkEh+kl) (2.2.2) (cos (~b + ~ k -  ~+k) >~= \ ~ 

- - I= I IxoXlE I e(Xo, x >eXoeX, (2.2.3) 
-~o - ~  XoX1Eh 
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foof ]Eh] IXoXxl 
2:vNx/~ -zo -oo 

x exp [ -  ½(X~ 4- X~.)]dXodX~ 4 . . . .  

2lEvi (2.2.4) - - ~ / - ~  + . . . .  

Thus we obtain our second main result, the analogue 
of (2.1.4) in the centrosymmetric space groups, 

lEhl = 2 / q  1/~' <cos (q~h+ ~Vk+ % h--k))k+ . . . .  (2"2"5) 

Since now every phase has the value 0 or g, each 
contributor to the average in (2.2.5) has the value + 1. 

Again, for future reference, we write the analogue 
of (2.1.5) in the centrosymmetric space groups 
(Hauptman & Karle, 1957; Vaughan, 1958): 

cos (~vl + ~ + ~va) 
/q3/~ 

- 8]E1E~al <(IEkl2-1) (lEhx+k[2-- 1) (IEhl+h~'+k[~'-- 1)>k 

1 
4- I~x/~[E~E~Ea I (IE~]Z 4, lEe] ~-4- ]Ea[ ~ -  2) 4 , . . .  , 

(2.2.6) 

where again hi, h2 and ha satisfy (1.2) and the ab- 
breviations of § 1 are used. 

Needless to say, additional correction terms in the 
series expressions (2.1-4) and (2.2.5), of the order of 
1/271/~ (or perhaps 1/2V), may readily be found if 
desired by simply carrying more terms in the prob- 
ability distributions (2.1.1) and (2.2-1) respectively. 

2-3. Addi t ional  relation~hips 

Because of their simple interpretation, we are 
primarily concerned in this paper with equations 
(2.1.4) and (2-2.5) However many other relationships 
may be derived in the same way First  we shall 
need the preliminary integral formula 

IC°xn exp ( - -ax2)dx  = (2-3.1) 
F(½(n+ 1)) 

o 2a½(n+D ' 

where /~ is the Gamma-function and n > -- 1, a > 0. 
Then from (2.1.1) we find, for example, if p > - 3 ,  
q>  - 3 ,  

<lEklPlEh+ki ¢ COS (~O h 4- q~k-- ~ g h T k )  >k 

= RoR1 cos (~h+ ~ 0 -  ¢1) 
~=o.~0o=o ~R~=o Ro=O 

xP(R0, R1; ~b0, ~l )dRod.RldqSod~l  (2.3.2) 

IEh[ 
-- At1/2 I ' ( ~ - ~ )  I ' ( ~ )  + . . . .  (2"3-3) 

Thus, for the non-centrosymmetric space groups, 

I~Vl/2 
IEhl = 

X <[EklPlEh+klq COS ((Plat q~k+ ~ 9 - - h - - k ) > k - [ "  • " • , 

(2.3-4) 
the special case p = q = O  of which is (2.1.4). 

Again, from (2.2.1), if p > - 2 ,  q > - 2 ,  

<]Ek]P]Eh+kl g COS (~Vh + ~Vk-- ~Vh+k) }k 

([Ek[V]Eh+klq}EhEkEh+k]~ (2"3"5) 

f °° l °° IX°l'+llXllq+llEhIp'x Xl)dXodX~ (2.3.6) 
= - o o - 0 0  XoX1E-------b t o, 

2½(P+q+2) ( P 2  2) 
-- XN1/2 ]Eh,I" - -  T ' ( ~ - ~ )  + . . . .  (2"3"7) 

Hence, for the centrosymmetric space groups, 

levi - -  

X <[EklP[Eh+klqCos ( ~ h ~ -  ~ k 4 -  ~0--h--k)>k~- " • " , (2"3-8) 

the special case p = q = O  of which is (2.2.5). 
The case p = q =  1 of (2.3.4) and (2.3.8) yields one 

and the same equation valid for all the space groups, 
non-centrosymmetric and centrosymmetric, 

]Eh] ~ _ /~ l / 2< ]EkEh+k[  COS (~9h4- ~0k4- ~0_h_k)>k  . (2"3-9) 

I t  is easily verified that  

<IE,,E,,+,,] sin (q~,, + q~k + q~-h-k)>,~ = O . (2"3"10) 

Hence 

E h  : IEhl exp (iTCh) ~ /~V 1/2 

X <]E_kEla+k ] exp ( -- i~k4- i~gh+k)>k 
---- lW/~(E_,,Eh+,,>,,= 2V~/~(EkE,,_,,>,~, (2.3-11) 

so that  (2.3.9) and (2-3-10) are equivalent to (2-3-11), 
the Hughes-Sayre formula (Hughes, 1953; Sayre, 
1952). The derivation of (2.3-9) and (2.3.11) given 
here is instructive in tha t  it makes clear why these 
relationships are valid, at  least to a first approxima- 
tion, for all the space groups. 

3.  C o n c l u d i n g  r e m a r k s  

The obvious conclusion to be drawn from (2-1.4) 
and (2.2.5) is that  the magnitudes of the structure 
factors are determined by the values of the phases. 
Thus we obtain the unexpected result tha t  the phases 
of the structure factors suffice to determine the 
crystal structure. 

Comparison of equations (2.1.4) and (2.1.5) is even 
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more revealing. We observe first tha t  the factor 
multiplying the average on the right in (2.1.4) is of 
the order of N 1/2 while in (2.1.5) this factor is of the 
order of 2V3/~. Assuming tha t  these averages are 
est imated by  means of only a finite sample from the 
infinite population of phases or magnitudes respec- 
tively, and hence subject to sampling errors, i t  follows 
tha t  the accuracy of magnitude determination from 
known phases using (2.1.4) is greater than  the accuracy 
of phase determination from known magnitudes using 
(2.1.5). Since the electron density appears to be just  
about as sensitive to errors in the magnitudes as in 
the phases of the structure factors, it  would seem 
tha t  a given set of phases contains more structural  
information than the corresponding set of magnitudes. 
In  this sense then the crystal structure appears to be 
more int imately related to the phases than  to the 
magnitudes of the structure factors (naturally for 
large N). This is somewhat unfortunate for X-ray 
crystallography since i t  is the magnitudes of the 
structure factors, not the phases, which are obtained 
from experiment. 

There is another way of interpreting the pair of 
equations (2.1.4) and (2.1.5) which is part icularly 
illuminating. We may  regard (2.1.5) as an infinite 
system of simultaneous equations in which the struc- 
ture invariants (1.1) are assumed to be known and the 
magnitudes are the unknowns. Then, if the phases 
are the ones appropriate to some underlying crystal 
structure, (2.1-4) gives the solution of this system of 
equations. Alternatively, and more relevant for X-ray 
crystallography, we may regard (2.1-4) as an infinite 
system of equations in which the magnitudes (1.6) 
are assumed to be known and the invariants (1.1) are 
the unknowns. Then, again under the assumption 
tha t  the magnitudes do in fact correspond to some 
crystal structure, the solution of this system of 
equations is given by (2.1.5). I t  should be emphasized 
again tha t  the fact tha t  the relations (2-1.4) are 
'strong', in the sense tha t  the relatively small power 
N ~/~ appears, does not imply tha t  the inverse relations 
(2.1.5), the solution of the system (2.1.4), are equally 
strong. On the contrary, the occurrence of the higher 
power, N ~/~, in (2.1.5) suggests tha t  the solution of 
the system (2.1.4), however it  may  be expressed, 
is not likely to be as powerful a relationship as the 
system (2.1.4). Of course this is just  another way of 
saying tha t  magnitudes are more accurately deter- 
mined from phases than  vice versa. I t  should however 
be emphasized tha t  the results obtained so far, 

however suggestive, do not preclude the possibility 
tha t  relationships as powerful as (2.1.4) may  exist 
which express the phases in terms of the magnitudes 
of the structure factors. An important  contribution 
to our knowledge would be the definitive resolution 
of this question, one way or the other.* 

Instead of the system (2.1.4) we consider next the 
Hughes-Sayre relation (2.3.11), which may  also be 
wri t ten 

lEh[ exp (i~h) = - ] V l / 2 ( [ E k E h - k [  exp ( i ( p k - } - i ~ P h _ k ) ) k  . 

(3.1) 

We may regard (3.1) as an infinite system of equations 
in which the magnitudes (1.6) are known and the 
phases are the unknowns. The solution of this system 
of equations is again given by (2.1.5). As before, 
the fact tha t  the relationships (3.1), like (2.1.4), are 
powerful ones does not imply tha t  by solving the 
system (3.1) we necessarily obtain just  as powerful 
expressions for the phases in terms of the magnitudes. 
The available evidence, while not conclusive, suggests 
tha t  the opposite is the case. 

Similar remarks evidently apply to the centro- 
symmetric space groups for which the appropriate 
systems of equations are (2.2.5), (2.2.6) and (3.1). 
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* The fac t  t h a t  special cases of (space group dependent )  
' s t rong '  re lat ionships exist  which express  the  phases  in t e rms  
of the  magn i tudes  (e.g., if hl ~= O, 

cos ¢P2h, 0, ~l ---- ~l/2/(]E2h, 0, ~/]) (JEhla] 2 -- 1 )k 

in the  space group  P222)  is no t  re levant .  In  all such cases 
the  averages  are ex t ended  over  some (one or two-dimensional)  
subse t  of the  vec tors  in reciprocal  space,  while in (2.1.4) and  
(2.1.5) the  averages  are t aken  over  all vec tors  in reciprocal  
space. 


